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Abstract

Autonomous vehicles (AVs) are projected to become a reality in the near future, due to
advancing technology and major incentives for manufacturers to pursue them. A notable
incentive is the ability for travellers to free up their driving time, by allowing the car to drive
itself. This enables travellers to perform other activities while travelling, which carries with
it numerous considerations. Two key considerations are the increased potential for motion
sickness, and the greater use of cars due to the appeal of being able to perform other activities
while travelling. One way of addressing the former is through imposing acceleration and
deceleration constraints, such as those used in light-rail trains to reduce the discomfort of
passengers, improving comfort but potentially adding congestion. The ability to perform other
activities while travelling can be understood as a reduction in the Value-Of-Travel-Time (VTT)
of driving, which may lead to greater car use by reducing the utility cost of travelling. Both
of these effects have been studied historically, but in isolation and through micro simulation.
This study uses two modern agent-based transport simulation software MATSim and SUMO,
to identify the contrasting effects of these two factors on car attractiveness and subsequently
car use. Light-rail constraints are found to add 215 seconds on average to trips less than
10 km, but reduce travel time of trips greater than 10 km by 434 seconds. This change in
travel times leads to a simulated increase in average car trip distance by 19%, and a reduction
in public transport trip distance by 6%, due to part of the short-trip car users switching to
public transport, and the reverse occurring for long-trip public transport users. The VTT
reduction of performing other activities while travelling did not change the trip distributions
of any travel mode. The overall proportion of car travellers changed by less than half a
percent for both light-rail constraint and VTT reduction components, though was three times
more significant for the VTT reduction than the light-rail constraints. The combined effect of
light-rail constraints and VTT reduction could not be studied due to software issues, but was
hypothesised to be no greater than less than half a percent. These findings suggest light-rail
constrainted autonomous vehicle may be of benefit for long-distance travellers, but not short-
distance travellers, due to added delays in trip times, where public transport is seen as more
desirable, and may benefit from further investment should light-rail constrained AVs become
a reality.

1 Introduction

Self-driving cars, also known as Autonomous vehicles (AV for short) are projected to enable an
increase of $507 bn in financial revenue [1]. Autonomous vehicles utilise the existing technology
of cameras, sensors and radars, in conjunction with intelligent driver support computer systems.
Computer systems such as Nissan’s Advanced Driver Assistance System [2] perform the function
of driving themselves with little to no human intervention. Autonomous vehicles are typically
defined as having Level 3 or higher automation, as per the SAE guidelines [3], whereby cars do
not need human intervention to travel except as a fallback in emergency situations. Level 4 from
the aforementioned guide is also commonly used, defined as an autonomous vehicle that can also
self-manage emergency fallback procedures.

As of 2018-2019; Toyota, Volkswagen, Ford, Nissan, and Honda are the market leading automotive
manufacturers [4], and all are currently developing their own versions of autonomous vehicles ([5],
[6]) in an effort to acquire as much of this potential revenue as possible. Because of this, it is
projected that ~25% of vehicles will possess a Level 4 or higher automation by 2045. Therefore
it is imperative to understand the consequences of this technology before mainstream adoption
occurs.

One of the potential consequences is a change in the way people travel, due to the unique charac-
teristics that autonomous vehicles will possess. A major benefit of AVs is the ability to perform
non-driving activities while travelling to a destination ([3], [7], [8], [9]). This would increase the
attractiveness of driving [10], which can be measured by the value travellers place on travel time
[8]. However, this involves travellers paying less attentionn to the road, making them more suscep-
tible to motion sickness [11]. As a result, improving passenger comfort in order to reduce motion
sickness is likely to be a key focus within vehicle design, and has been recommended in previous
studies [12].

One way of tackling the issue of motion sickness within autonomous vehicles, is to add constraints
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to the maximum acceleration and deceleration of these vehicles ([12], [13]). This reduces the
opportunity for jerks (sudden changes in acceleration) [14] to occur while driving. This has already
been implemented in light-rail transit networks [15], and is currently being experimented with in
autonomous vehicles ([12],[13]). However, this approach may increase congestion, by making cars
slower, particularly in already congested areas that involve frequent starting and stopping. Because
travelling is typically considered to be a cost or disutility ([16], [17]), this would detract travellers
from using cars. This detraction is notably in contrast to the attraction of performing other
activities while travelling, and may also be measured by its effect on traveller’s value of travel
time.

This suggests the appeal and subsequent use of autonomous vehicles, may depend on the product
of the aforementioned two factors - the attractiveness of performing other activities while driving,
and the detraction of constraining acceleration and deceleration. Both of these effects can be
quantified in the universal metric of value of travel time. Therefore by understanding the net value
of travel time of these two effects, it is possible to determine the appeal and subsequent use of
autonomous vehicles in the future.

Understanding car use levels is an important aspect for planning future transport infrastructure,
as it determines the amount and type of infrastructure that will be needed in the future. If car
use levels are forecasted to increase as a result of the greater appeal of autonomous vehicles, this
may necessitate further investment in infrastructure within affected areas. Conversely if car use
is expected to decline as a result of increased congestion, such increases in spending may not be
required. Separetely, the automotive industry writ large may benefit from knowing the appeal of
autonomous cars in the future, as may other tangentially related industries such as the emergency
services industry that cares for accident patients. This is the motivation for the study being
conducted.

2 Objective

The goal of this research is to understand car use within an autonomous vehicle world – one
where autonomous vehicles comprise a significant proportion of vehicle traffic. Doing so tells us
whether car traffic volumes will become more or less prevalent through the advent of autonomous
vehicles, and to what extent, which is vital for transport infrastructure planning among other
areas. However this requires the notion of an autonomous vehicle to be defined and modelled.

Our definition of an autonomous vehicle focuses on passenger comfort, consisting of two opposing
forces. These are the detracting congestion of imposing light-rail acceleration and deceleration
constraints (LRCs), and the attracting opportunity to perform other activities while travelling.

These opposing forces are analysed through the unifying metric of Value-of-Travel-Time (VTT),
which represents the relative worth of travelling as compared to other activities [18]. Light-rail
constraints are expected to make travelling by car cost more in VTT for the user due to congestion.
Conversely, the opportunity to perform non-driving activities reduces a car traveller’s VTT by
giving them back part of their free time. Using the simulation software MATSim and SUMO, it is
possible to model both of these effects, and study the changes in travel mode choice by travellers
that occurs as a result. This exercise is what will be undertaken as part of this study.

3 Literature Review

3.1 Acronyms

Below are acronyms used throughout the literature review
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Acronym Definition
AV Autonomous Vehicle
HV Human-driven Vehicle
LRC Light-rail Accel. & Decel. Constraints
HSR High-speed Rail
VOT Value of Time
VTT Value of Travel Time
VTTS Value of Travel Time Savings
IVT In Vehicle Time
OVT Out of Vehicle Time
SP Stated Preference
RP Revealed Preference
OSM Open Street Map

3.2 Value Of Time

The aggregate benefit or disadvantage of travelling is commonly quantified in the term ‘value of
travel time’ (VTT). This represents the trade-off ratio between the in-vehicle time coefficient and
the cost coefficient [18]. The value of travel time can thus be seen as the relative worth of travelling,
by comparison to other activities, as a result of the utility (or disutility) it brings. In general the
value-of-travel-time can be considered a net disutility rather than a utility, as drivers must sacrifice
time they would otherwise spend in leisure for the purpose of travelling [19]. It is also important
to note that value of time generally needs to be multiplied by the trip time itself to determine the
trip’s overall value. This is shown in [20], where the metric of dollars per hour per car was used,
which in turn needs to be multiplied by the trip time. This is also shown in [21], where the value
of time for the first hour may differ to the value of time for the second hour within a trip.

The notion of a value of time has within it the implicit goal of maximising utility and minimising
disutility. Thus value of time and the maximisation of utility is a psychological concept, motivating
in our case which travel mode one chooses, based on the utility of their choices. The components
being studied are light-rail acceleration & deceleration constraints, and the increased productivity
of using AV. Both the comfort that may be gained from light-rail acceleration & deceleration con-
straints, and the increased productivity are notable in being identifiable as first-order implications
on value of time within a ripple effect model [7]. This ripple effect model is a means of categorising
effects based on their relative distance from a triggering event.

These VTT components (light rail acceleration & deceleration constraints, and increased productiv-
ity potential) also work in opposite directions. Light-rail constraints on accelerating & decelerating
vehicles that are currently under investigation as viable AV driving styles, as shown in ([12], [13]).
These constraints add disutility to the car’s VTT, by slowing the car’s maneuverability down.
Conversely, the productivity of passengers performing non-driving tasks while driving will add
utility to their trip. This may ultimately lead to greater or fewer agents deciding to use AVs. If
the productive activities utility when using an AV outweighs the light-rail constraint disutility,
then we expect car usage to increase. On the other hand, if the added disutility of these light-rail
constraints is greater than the productive activities utility of an AV, then we expect fewer car
users. Both of these scenarios may have consequences on how we design the transport infrastruc-
ture of the future. Therefore there is an opportunity to research these two factors, to determine
the ultimate effect on total car usage.

3.3 Impact of Higher Disutility from Light-Rail Acceleration & Decel-
eration Constraints

The first of the two value of time components being studied are the light-rail acceleration &
deceleration constraints that increases the disutility of travel. This will be discussed here.
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3.3.1 Motion Sickness in Vehicles

One significant problem with autonomous vehicles is motion sickness, due to many of the driving
characteristics of autonomous vehicles (AVs) being linked to those which cause motion sickness
[13]. Motion sickness can be defined as a sensory conflict between actual and expected vestibular,
visual, and kinesthetic inputs [22], causing symptoms of nausea and vomiting. Other symptoms
can be malaise, pallor, and cold sweating [23]. The word nausea itself originates from the Greek
word ‘naus’ which relates to ships as in the word ‘nautical’ [22]. Driving characteristics that have
been shown to contribute to motion sickness include having a compromised view of the road [11],
acceleration and road surface ([13], [24]), as well as facing rearwards relative to the travel direction
of the car ([13], [25]). These issues are unique to autonomous vehicles, because the ability for an
AV to drive itself enables users to perform non-driving activities such as resting, or productive
tasks [3] while travelling. This argument is naturally predicated on the assumption that most AV
users will take advantage of this potential.

M. Turner and M. J. Griffin found 28% of passengers of coaches reported feeling ill, with the effect
decreasing with age and travel experience [11]. However 79% of the ill passengers reported being
only ‘slightly unwell’, while the mean sickness level was below that of sea travel. Yet even a mild
discomfort may be a deterrent for frequent users such as those commuting to work.

Acceleration and road surface have been linked to motion sickness and discomfort ([13], [24]).
[13] used twelve subjects split by driving style, while [24] used 115 subjects in real-world test
scenarios. In both cases a driver was instructed to drive at varying levels of acceleration, while an
accelerometer was used to both display and capture acceleration information. [13] studied both
longitudinal and lateral acceleration, while [24] studied only lateral acceleration. Discomfort levels
were obtained through surveys of the subjects. Both studies concluded that there was increased
discomfort at higher acceleration levels both longitudinally and laterally.

One limitation to the existing literature on motion sickness is its high reliance on surveys, for
example in studies [13], [11], [25], and [24], typically using a four or five-point scale from low to
high levels of motion sickness. It is possible for example that travel users overstate or understate
their sickness due to external factors impacting the objectivity of their perception, such as mood,
appetite, or awareness of being observed (Hawthorne effect), that do not themselves affect one’s
motion sickness. This may lead to findings that motion sickness is a greater or less significant
problem than it truly is, when compared to the user’s real world travel decisions. More objective
measures have been proposed, such as using sweat gland activity from a person’s volar surface [26],
or comparing stomach activity, blinking and breathing [27].

Thus far a link between auto-mobile travel and motion sickness has been established. To combat
this motion sickness, users of AVs are likely to expect a comfortable riding experience [13], made
available by the car’s autonomy. Milakis et al. [7] in his literature review of potential AV effects
suggests that “Motion sickness, ... could be included in path planning” systems, from the finding
that travel comfort is a first-order implication within its ripple effect model. The ripple effect
model as noted by the authors is a recognised describing tool for categorising effects based on their
relative distance from the triggering event – in this case the introduction of AVs. A first- order
implication therefore is one that is most causally linked to the introduction of AVs. The next
section will describe the existing literature on how this comfort may be achieved.

3.3.2 Combining Light-rail Acceleration & Deceleration Constraints with AV Value-
of-Time

Some of the ways motion sickness can be tackled include performing mental tasks and reducing
head movements [11], yet it is unclear how effective or practical such exercises may be, particularly
when such exercises interfere with a passenger’s intended non-driving activities for the trip. Some
studies show that on the contrary, passengers do not wish to perform mental tasks while being
driven, instead opting for relaxation [9]. A similar argument could be perceived for why they
may wish to not limit their head movements. Other approaches studied include improving the
plushness of the ride, such as by introducing more comfortable seat cushions and backrests [28],
or keeping passengers facing forward to the effect found in [25] of rearward facing seats causing
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motion sickness. These show some promise, and should be considered in conjunction with our
approach.

A common approach to reduce discomfort is for vehicles to avoid where possible rapid accelerations
or decelerations. Acceleration and road curvature have both been highly correlated with increased
discomfort in previous studies [24], suggesting that reducing acceleration and deceleration will have
a positive effect on rider comfort [3].

An existing example of reducing acceleration and deceleration for comfort purposes can be seen
in light-rail transit systems [15]. Light-rail acceleration and deceleration is often constrained to
values that ensure longitudinal and lateral g-forces do not exceed 0.07 [13]. This has resulted in
light-rail vehicle specifications typically stipulating a maximum acceleration of 3mphps (1.34m/ s
2 ) and a minimum emergency deceleration of 4.5 mphps (2.01m/s 2 ) [15]. These constraints are
often give the term LRT (light-rail transit) constraints or LRC (light-rail constraints). Research
has already commenced on how to incorporate these constraints as driving styles for autonomous
vehicles ([12], [13]). The first of these studies recommends further research in the area of comfort
within AVs, and the effects of motion sickness.

3.3.3 Effect of Light-rail Acceleration & Deceleration Constraints on Congestion

It is hypothesised that adding light-rail acceleration & deceleration (i.e. braking) constraints to
vehicles will lead to increased congestion. This is the intuitive assumption, since vehicles will take
longer to reach their desired speeds, and will not be able to follow as closely safely, due to having
less rapid deceleration or braking. Existing research supports this theory, as will be shown.

One area this has been researched is take-off time for a vehicle at an intersection. Taking off at
an intersection necessarily requires acceleration. Existing acceleration constraints within vehicles
appear to be a factor in take off time delays for vehicles waiting at an intersection. In [29] it
was found that removing driver delays and vehicle acceleration constraints “would have resulted
in a 24-s reduction in the total delay incurred during the simulated signal cycle”. This study used
a deterministic queuing model, further queue based models from the 1981 Australian Capacity
Guide, shock wave theory, as well as delays estimated through the INTEGRATION microscopic
traffic simulation software.

Le Vine et. al. in [8] discovered using the micro/mesoscopic simulation software VISSIM that
light-rail acceleration & deceleration constrained (LRC) vehicles must approach an intersection at
29 kph, as compared to the 50 kph of non-LRC vehicles, due to the risk of a yellow light turning red,
and its inability to stop in time due to the slower braking of an LRC vehicle. While the low- level
impact of acceleration and deceleration constraints on individual intersections may be scalable, no
existing studies have simulated the effects of such constraints within a complete transport network.
Both [29] and [8] limited their study to individual intersections. This is not for lack of capability
however; simulation of other acceleration & deceleration constraints has been proven possible in [30]
and [31]. In [30] a proposed car following model that incorporates an acceleration and deceleration
profile was implemented within the SUMO (Simulation of Urban Mobility) simulation software
[32], and simulated on the Open Street Map (OSM) network of Fuzhou, China. Similarly, [31]
simulated car following behaviour of autonomous vehicles, on a single 5 kilometre long lane using
different communication methods between cars. The acceleration and deceleration profiles of the
cars were implemented along with the communication controller using SUMO, and results were in
line with expectations from prior analytical analysis. The existence of software such as SUMO that
is capable of simulating acceleration & deceleration constraints, reveals an opportunity to study
the macroscopic effects of the aforementioned LRC vehicles within a wider transport network. To
date this has not been performed.

Apart from congestion, convenience and comfort may have other detrimental effects. For example,
improving convenience and comfort of autonomous vehicles has the potential to “increase total
vehicle travel and therefore crash exposure” [3]. This comment is based on a projected increase in
vehicle miles travelled of 3-9%. However, this figure is taken using travel demand modelling of an
assumed scenario occurring in the future, that is isolated to Germany. An activity based model
was also shown to large increases vehicle miles travelled [33]. Still, the limited research in this area
suggests further opportunity to validate this prediction.
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3.4 Impact of Lower Disutility of Autonomous Vehicle travel

The second of the two value of time components being studied is the productivity gains that lower
the disutility of travel. This will be discussed here.

3.4.1 Current Value-Of-Travel-Time Studies

Value of travel time (VTT) varies between travel modes, for reasons such as comfort [17] and the
ability to perform non-driving activities while travelling [34]. These benefits (utilities) reduce the
overall disutility of travel for these travel modes, enabling travellers to travel longer for the same
relative cost. The importance of reducing the disutility of travel is so paramount, it is quantified
as the ‘value of travel time saving’ or VTTS; where the saving is the reduction in disutility, and
the value represents the relative worth of this saving. VTTS has been shown to be higher for long-
distance trips, and vary by trip purpose, travel mode, country, as well as access and egress times
in various meta-analyses ([35], [21], [36], [37]). First we will discuss VTT more generally through
these meta-analyse, then identify the specific aspects of it that are pertinent to our question.

The main meta-analyse mentioned above on VTTS [35] used 77 studies across 28 countries, while
[21] used 105 that were isolated to Britain, and was repeated for [36] and [37]. These meta-analysis
all use stated preference (SP) methods, that employ regression models to estimate VTT coefficients
from a series of studies. In these studies, SP methods are often coupled with Revealed preference
(RP) methods, which rely on observed (revealed) data rather than opinion (stated) surveys. SP
methods appear to be the de facto standard for choice modelling in transportation, in particular
those that can be defined as ‘Stated choice’ experiments [38]. This is important for the case of
AVs, as SP methods are the only way to measure the AV’s VTT , until such time that AV travel
exists within society and is observable. If there are shortcomings to SP methods, this will have
ramifications for AV VTT findings.

While both [35] and [21] compared and combined SP and RP methods, their conclusions differed
marginally, and neither have tackled the issue of autonomous vehicles. Both [35] and [21] found
SP methods exhibit a lower VTTS than joint SP-RP methods ([21] specifies this as 15% lower), in
particular around OVT (out of vehicle time) which is supported by numerous studies [39].

Despite this, [21] stated that SP and RP are “broadly comparable”, and provided explanations
in the form of the respondent’s psychological rationalising process for why SP may differ, such
as respondents using “simplified decision rules” and over-rating the variability of cost, thereby
devaluing the cost and subsequent cost-savings. These limitations of SP models are important,
since we have established that SP models are the only existing way to predict autonomous vehicle
VTT. This suggests the eventual RP costs may be marginally greater than the SP data indicates.

While studies on AV VTT are limited, one can look at the characteristics that define existing
VTT in existing travel modes, such as comfort, to infer part of the AV VTT, since it will have
characteristics in common. In [17], the main and alternate modes of transport for 3945 respondents
to a Danish VTT Survey are compared, to determine the relative VTT of each transport mode.
It is found that – on average – non-autonomous car users have a higher VTT than other mode
users, and are more likely to use high VTT travel modes. However this appears to be dependent
on the driver’s original mode, since car drivers also show high VTT within bus and train. Thus
the author finds that “self-selection seems a credible explanation” for why travel modes differ in
VTT, rather than the mode itself. When looking at mode effects, [17] found that the train travel
mode has a higher VTT than non-autonomous cars for existing car and train users, due to the
increased comfort level in non-autonomous cars. This contrasts with other studies that identify
value of travel time within trains as lower than cars [40]. This may in part be explained by the
difference in wage earnings of train users as compared to car users, as described in [41], where
“VOTT is currently dependent not on the mode per se but on the associated wage rate of the
‘average’ traveller on that mode”. This is supported by [17]’s finding that the driver’s original
travel mode is more indicative of their VTT than the mode itself. A limitation to [17] is the
assumption of comfort being the determinant of any non-strategic travel mode choice, as well as
no clear description of how comfort is defined.

We have shown above that both car and train users present an increase in VTT when using the train
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travel mode, relative to their original mode. We also showed that VTT for car users on average
may be higher than those in trains. This highlights an important point, that VTT is dependant on
specific subsets of the population. An example is Mokhtarian P and Salomon I, who note that some
people prefer public transportation for its “opportunity to engage in other activities while traveling”
[10], citing several studies that use circumstantial evidence of this. Though circumstantial evidence
is not scientifically rigorous, due to the inability to extrapolate anecdotes towards large-scale effects,
without elaborate justification for doing so. It is still plausible that this phenomenon can be
extended to some of the population. [9] cites a paper stating that “commuters are more likely to
consider their travel-time as wasted than people travelling for leisure or business reasons”, which
is partially supported by [37] that saw ~10% higher VTT in commuters, and [16] that sees VTT
during peak hour times as higher than non- peak hour times. This higher VTT among commuters
suggests that they would see the highest VTT benefit through the introduction of AVs, if AVs are
able to provide VTT savings (VTTS).

More advanced VTT estimation methods include the creation of mixed logit models such as [18]
and [42]. This approach goes beyond the simpler regression methods (simpler meaning fewer
coefficients, steps required to calculate the result, and computational complexity) used in [35],
[21],[36],[37]. The mixed logit model does not encounter some of the problems with other regres-
sion models such as the multinomial logistic regression model used in [43] - often referred to as
multinomial logit. For example, multinomial logit models assume coefficients do not change be-
tween individuals ([18], [20]), that adding alternatives does not change the odds-ratio of existing
alternatives (i.e. the odds ratios are independent) [18], and that repeated choices by the same
respondent are independent of each-other [18]. One limitation with mixed logit models is the in-
ability to quantify the effect of unobserved variables [20]. An example given is a traveller’s wish
to take a longer scenic walk over a shorter car trip for subjective reasons. Though this limitation
is not unique to this method. This limitation may also not have any notable effect on VTT. If we
assume that subjective reasons can be in part distinguished by demographics, then [16] supports
this notion, as it finds no statistically significant effect for the unobserved heterogeneity of users.

While no clear consensus can be drawn, the above establishes car users as generally carrying a
higher VTT than other transport users, with the user having more impact than the travel mode
itself. It also shows that if given the choice, both car and train users show lower VTT in cars
due to the car’s added comfort. Commuters are found to have the highest VTTs, and therefore
are the group that would benefit the most from VTTS, such as those born by AVs. Finally, we
conclude finding that mixed logistic regression models are the most advanced and less susceptible
of regression methods used for VTT calculation, but note that there is reason to suspect the
improvement over simpler methods such as multinomial logit may not be statistically significant.

3.4.2 Reductions in Value-Of-Travel-Time of Autonomous Vehicles

With the advent of AVs, it is likely that the value of travel time for AVs will differ from that of HVs
(human-driven vehicles). One of the major benefits of AV is the increased utility it may provide,
by allowing drivers to perform other activities ([3], [7], [8], [9]). This will likely translate to a
lowered value of travel time for AV users, due to part of the travel time being usable ([8], [40]). In
[34] it is speculated that at 90% AV market penetration the economic benefits of AVs will reach
$196 billion, 66% of which will be born by congestion benefits that include in part the “lowered
burdens of in-vehicle travel time”. In [9] it was found that those who spend-time working in public
transport are most likely to consider working in autonomous vehicles as an advantage.

Gucwa has performed a “first-of-its-kind activity-based analysis of the prospective impacts of road
vehicle automation on travel patterns in the San Francisco Bay Area” [8] citing [40]. This was
achieved through various technologies, including CT-RAMP, Citilabs Cube, SAS, R, and Excel
[40]. He finds that automation will lead to a short-run increase of 4-8% in daily vehicle miles
travelled, as a result of the value-of-time being comparable to high-speed rail, or half that of
a vehicle. The half-car VTT does not appear to be based on any reasoning; presumably it is
calculated from the idea that half of the time in the vehicle is usable for performing other activities
while driving. However this is not a rigorous approach, and therefore is not advisable to be used
as a benchmark. The high quality rail figure is more understandable, as it is a real-world travel
mode’s value of time, has a high comfort level akin to non-autonomous cars that we previously saw
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decreases their VTT in [17], and provides passengers the ability to perform other activities that
some people take advantage of [10], just as an AV would. For these reasons the high-speed rail
figure of 4.0% – 5.2% greater vehicle miles travelled appears the more accurate of the two. This is
approximately 1.587x of the amount of the half-car VTT, which is 6.7% – 7.9%. Unfortunately the
VTT of high quality rail is not given, but if vehicle miles travelled scales linearly with the value of
time, we can infer the high quality rail VTT presented in [40] as 1.587x higher than the half-car
VTT, or 0.7935x that of a full-car VTT.

One recent working paper that attempts to define autonomous vehicle VTT is [43]. This study used
the previously mentioned survey method that incorporates stated preferences (SP) and revealed
preferences (RP) data within an analytical model. The model used is the multinomial logit model.
This paper supports the earlier notion that commuters would benefit most from AVs, as they are
found to perceive travel time in AVs less negatively when the car is driving itself than when it is
being driven manually [43]. Riding autonomously to work is also perceived less negatively than
all other travel modes, which confirms earlier VTT studies ([35], [21]). The study also aligns with
earlier studies’ findings that OVT (out of vehicle time) [38] is valued higher than IVT, resulting
in more negative responses when it is exacerbated (e.g. waiting times). However it contradicts
a previous study [41] that found passengers earning higher wages had higher VTTs on average,
instead finding that low income earners were “perceiving travel cost more negatively than people
with middle or high income”. It also claims that these VTTS are in the range of public transport
VTTS, contrary to [17] and [41], particularly because it controls for passenger’s wage rate, which
[41] claimed was the reason for public transport having a higher VTT.

Activities currently performed on existing light-rail transport vary widely. In London it has been
found that they predominantly involve typing on a phone and interacting with technology [44],
in a study comprising over 1700 passengers. These activities have shown to pose a safety risk if
performed while driving, since they distract drivers from the road [45]. Since AVs mitigate this
risk, it is likely that such activities will become prevalent within cars, adding to the utility of the
AV.

This reduction in safety risk of performing activities within an AV will also have the side-effect
of reducing the risk of existing users of phone within cars. In Melbourne, a recent study found
that 3.4% of observed drivers at high-traffic intersections were using a hand-held phone [46]. This
study observed 5813 drivers at six points of the day, noting the demographics and vehicle types.
The amount using hand-held phones was as high as 7% for P1 plate drivers (first year of driver’s
license). Importantly this study was limited to intersections, and does not necessarily reflect the
driver’s phone usage habits while the driver’s vehicle is in motion, where the majority of the safety
risk resides. However this added safety is also likely to further reduce the VTT for cars, since
risk-averse drivers will be more open to travelling, and travelling longer distances.

Therefore autonomous vehicles can be seen as likely to exhibit a VTT similar to existing high- speed
rail services, and one that is lower than all other existing travel modes, yet closer to the existing
public transport travel mode. As shown, the activities performed within these vehicles are likely
to involve using a phone and interacting with technology. The ability to perform these activities
safely will likely reduce the risk of those already using phones within their vehicles, improving the
overall safety of car travel and further reducing the predicted AV’s VTT. Collectively this forms
the basis for understanding the VTT of AVs.

3.4.3 Incorporating Light-rail Constraints and Reduced value-of-time AVs within
Travel Mode Choice

While a number of studies have been performed on the potential traffic effects of the introduction
of AVs, only one ([8]) to date has incorporated the effects of light-rail acceleration & deceleration
constraints that curb motion sickness, and none have incorporated both the light- rail constraints
and VTT reduction. Nor has any study measured the effect of such light-rail constraints on existing
VTT measures. The study mentioned ([8]) discusses the difference in VTT between an AV and
a HV (human-driven vehicle) as part of its background, but did not account for this difference
anywhere in its analysis. Therefore there is a gap in existing research, on understanding the
combined effects of both light-rail acceleration & deceleration constraints, and the hypothesised
reduced VTT of autonomous vehicles born by productivity gains.
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In this vein a multitude of traffic effects can be studied: congestion, density of road traffic, distri-
bution of vehicle types, or distribution of travel mode choice. As has been discussed and shown,
the light-rail constraints mentioned would likely lead to increased congestion. Likewise the hypoth-
esised reduced VTT of autonomous vehicles would lead to an increase in vehicle miles travelled
[40], which is likely to further add congestion. However the combination of these two effects may
convince car users – both AV and non-AV – to choose other forms of transport less affected by road
traffic, such as trains and trams. Naturally this effect cannot be captured merely by measuring
congestion or density of road traffic. Therefore it is proposed that the cumulative effect of both
of these AV properties would be captured in the change in travel mode choice. This is because
train travel mode is not - or in a very limited sense - affected by car congestion, it can be used
as a baseline for whether autonomous vehicles improve or reduce the appeal of car travel. If the
congestion drawbacks outweigh the productive benefits of AVs, then we expect the overall number
of car trips to decline, as car users migrate to other forms of transport. Conversely if the produc-
tivity benefits of AVs outweigh the increase in congestion, then the reverse is expected, with more
car users taking advantage of the extra time for non-driving activities.

This emphasis on understanding this potential change travel mode choice is also justified by the
potential cost savings. One review [47] of existing literature on the monetary savings of public
transport within Australia, found a saving of between $0.044 and $1.514 per marginal vehicle km
travelled. The various economic models used for quantifying these economic costs are described
in [48], and comprises their own area of research. Such considerations, while interesting, are
beyond the scope of this review. It includes a study that predicted a 29% increase in delays if all
public transport travel was switched to car. The converse was also included in this figure, in the
form of decongestion, where $0.305 to $1.040 could be saved per car km that switched to public
transport. The study also found these findings to be somewhat consistent with European and
American studies, with Europe showing comparable figures while America showed a reduced figure
of $0.261 per km travelled. This suggests an increase or decrease in overall car users - as born by
the introduction of AV - may increase or reduce economic costs respectively.

3.5 Understanding Travel Mode Choice

To understand the change in travel mode choices, as might be caused by the introduction of AVs,
one needs to create a predictive model of travel mode choices, that contains parameters which can
be altered for new scenarios. This can be done retrospectively, working backwards from the travel
mode choice. An example of this is [49], where logistic regression was used on the characteristics
of the persons making the travel choice, to determine to what extent (if any) each characteristic
of the persons’ influenced this decision, such as their age or income. Here a set of coefficients
were initially chosen to represent trip and demographic characteristics. Then a stepwise regression
was performed to determine the four most significant variables (coefficients) that determined the
probability of an agent selecting a package tour. From these coefficients, one is able to predict new,
previously unseen trips by knowing their characteristics alone. If, as a hypothetical example, a
coefficient of in-vehicle productivity is a strong predictor for a trip being chosen, then trips which
see greater in-vehicle productivity (such as those taken by AV) will be predicted as more likely to
be chosen. While this approach may be taken with stepwise regression, stepwise regression has its
own limitations, such as overfitting through capitalisation on sampling error [50], and being unable
to accurately determine the order of significance within variables [51].

An alternative approach is to uncover the VTT of travel modes for each trip, then much as in the
prior example, attempt to infer the VTT of a new travel mode by way of characteristics it shares
with known travel modes. Once the VTT is known, if the trip times are also known, these can
be multiplied by the trip mode’s VTT, and the travel mode choice intuitively becomes the trip
with the lowest cost (or highest utility if the value is positive). This is the approach taken in the
multi- agent transport simulation software MATSim [52], which uses a multinomial logit model
(MNL) in conjunction with its own VTTS formula, to determine the maximum utility plan for
a select proportion of agents for each simulated day (see Chapter 3 of [52]). MATSim has been
used to simulate numerous cities’ travel networks around the world, including Berlin, Germany;
Zurich, Sweden; San Fransisco, USA; Seoul, Korea; and many others [52]. Transport simulation
accuracy appears to be high, with the Caracas scenario in [52] showing simulated traffic counts
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within 3% of a comparable study using an alternative method. Similarly, the Shanghai scenario
found “Extensive simulation results indicate that most traffic simulation volumes matched quite
well with observed counts”. While research into choice of travel mode within a simulation is scarce,
the San Francisco scenario extends MATSim’s scoring function to include social influence factors,
to determine the effect of social influence on travel mode choice. This relies on the multi-modal
extension of MATSim, defined in 21.3.1 of [52], but shows the ability for simulation software to be
used for predicting travel mode choice.
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4 Methodology

4.1 Outline

The first property being analysed is the light-rail constrainted driving style that, as has been dis-
cussed in the Background and Literature Review sections, is likely to be adopted by autonomous
vehicles. The second property is the reduced Value-of-Travel-Time by passengers (known as VTT)
using autonomous vehicles, due to the opportunity provided to them to perform non-driving ac-
tivities while travelling. The goal of our methodology is to represent both of these properties as
detractors and attractors for car use respectively, in order to understand what the net attractive-
ness of car use will be. Using public transportation within our scenario (Trains and trams) as a
control, it is possible to measure the change in car use by the relative increase or decrease in the
use of trains and trams. This is made possible through the replanning module within the MATSim
software, that allows travellers to change their travel mode based on the score of that travel mode.
The score of the travel mode can be adjusted to take into account properties such as the two being
analysed. By adjusting the score of car travel to account for the aforementioned two detracting
and attracting properties, the simulation can be run to determine whether the adjustments lead
to more or fewer car users. The following sections detail how these properties are identified and
subsequently implemented within MATSim.

4.2 Software

Two pieces of transport simulation software are used – SUMO [53] and MATSim [52]. Both
SUMO and MATSim are agent based modelling and simulation software. Agent Based Modelling
and Simulation (ABMS) involves modelling individuals within a simulation independently, as self-
contained, autonomous, and containing their own state, behaviours and goals [54]. This distributed
approach produces emergent phenomenon not possible within a centralised system, such as patterns
in congestion, travel mode and route choice.

The choice to use both software stem from limitations in both software, that prevent either from
being used exclusively for the purpose of this study. SUMO is used for simulating the light-rail
constraints imposed on our cars, as MATSim is not able to simulate acceleration or deceleration of
agents. SUMO’s capability for modelling light-rail constraints comes from its use of acceleration
and deceleration to achieve agent velocity [32]. This enables microscopic simulation capability not
possible in other simulation software such as MATSim. MATSim is used for simulating the VTT
change born by travellers’ ability to perform other activities while travelling [8], using its novel
scoring function that does not exist within SUMO.

Alongside these software, python scripts are also developed and used to scale our car population
and measure trip durations for subsets of the population. These were developed and ran through
Jupyter Notebooks [55], an iPython GUI designed for developing reproducible workflows.

4.3 Melbourne Model

The analysis uses two existing MATSim models of the city of Melbourne. The main model used for
running the final simulations is developed by the KPMG and ARUP companies for Infrastructure
Victoria, an independent advisory board for Victoria, Australia’s infrastructure. Importantly for
this analysis, the model includes a linear regression on the Vista survey data [56], to produce
travel mode utility functions (referred to as calibration parameters) for all travel modes that
reflect current sentiment. The Vista survey is a public government survey conducted between
2012 and 2016, to understand Victorian household travel behaviours. This MATSim model is used
within the final simulation. The words ’model’ and ’scenario’ may be used interchangeably, as the
MATSim scenario is represented by a single model, and can only be referred to via its model.

A secondary model is used for discovering the effect of light-rail constraints, as the KPMG MAT-
Sim model was not available at the time. This model is for the city of Melbourne, Australia’s
Metropolitan Network, and is produced by RMIT University, University of Melbourne, CSIRO
Data61, Swinburne University, and KPMG Australia [57]. This model will be referred to as the
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’Vista’ model, as it uses Vista survey data. It is used within all simulations. The words ’model’
and ’scenario’ may be used interchangeably, as the MATSim scenario is represented by a single
model, and can only be referred to via its model.

The Vista model is converted to the SUMO format using SUMO’s netconvert function. To improve
running times, trips within the Inner East and CBD areas of Melbourne are isolated (see the results
section 5.1 for details) and used exclusively for all SUMO simulations. All non-car population is
removed (e.g. pedestrians), as these agents are simulated differently within SUMO or not at all,
and are not required for our analysis. After converting the model to the SUMO format, trips are
duplicated numerous times to achieve congestion levels in-line with expected values in Melbourne.
These expected values are taken from an untouched version of this MATSim model.

The light-rail constraints are modelled using SUMO’s “accel” and “decel” parameters within the
config file, which set the upper bound metres-per-second acceleration and/or deceleration allowed
by vehicles. The Melbourne model is run in SUMO with and without these constraints.

4.4 MATSim Scoring Function

The scoring function is a capability within MATSim, that enables the use of value of travel time
models [52], by assigning utility and monetary value to trips and activities. This utility is generally
provided in advance, but can scale with time and trip length, among other variables. It can also
be adjusted higher or lower, such as to account for the added utility of performing other activities
while travelling. Both components being analysed are represented as adjustments to the utility
within MATSim’s scoring function.

MATSim is used for determining the final attractiveness of car use. This is achieved through the
scoring function, by inputting both the reduction in VTT from travellers being able to perform
other activities while travelling, as well as the delay caused by adding light-rail constraints. This
delay caused by adding light-rail constraints is framed as disutility, while the VTT reduction can
be seen as adding utility. The scoring function and its terms are noted in Figures 1 and 2 below,
and are taken from the MATSim manual [58]. The scoring function is used to determine the score
of each trip, based on the utility or disutility it provides to the traveller. The terms that are to be
adjusted have been highlighted in red and blue.
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Strav,q = Cmode,q + βtrav,mode(q) · ttrav,q + βm · ∆mq

+ (βd,mode(q) + βm · γd,mode(q)) · dtrav,q + βtransfer · xtransfer,q
(1)

Figure 1: The MATSim scoring equation, with terms used coloured

• Cmode(q) is a mode-specific constant.
• βtrav,mode(q) is the direct (see Section 3.2.4) marginal utility of time spent traveling by mode.
Since MATSim uses and scores 24-hour episodes, this is in addition to the marginal utility
of time as a resource (again, see Section 3.2.4).

• ttrav,q is the travel time between activity locations q and q + 1.
• βm is the marginal utility of money (normally positive).
• ∆mq is the change in monetary budget caused by fares, or tolls for the complete leg (normally
negative or zero).

• βd,mode(q) is the marginal utility of distance (normally negative or zero).
• γd,mode(q) is the mode-specific monetary distance rate (normally negative or zero).
• dtrav,q is the distance traveled between activity locations q and q + 1.
• βtransfer are public transport transfer penalties (normally negative).
• xtransfer,q is a 0/1 variable signaling whether a transfer occurred between the previous and
current leg.

Figure 2: Definitions of the terms used within the MATSim scoring equation, with terms used
coloured

In the above equation, the VTT reduction of performing other activites while travelling is rep-
resented as a reduction in βtrav,car(q), the marginal disutility* of travel time when travelling by
car. This is achieved by scaling the existing car travel time disutility within MATSim by the VTT
reduction identified. Similarly, the delay caused by adding light-rail constraints can be represented
as a decrease in βd,mode(q), the marginal disutility of travel distance, whereby the further one trav-
els the more delay one incurs (the decision to use distance here is explained further in this section).
This is done by first identifying a linear function for the delay based on distance, then converting
it into utility.

*NB: While the term is defined as marginal utility in the above table, travel time is defined within
MATSim and the majority of literature as a disutility, due to the cost incurred to the traveller.
Therefore to avoid confusion the term ’disutility’ is used, rather than negative marginal utility,
although both are interchangeable.
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4.5 Deriving Delay Function of Light-Rail Constraints

A linear function for the delay incurred by adding light-rail constraints (LRCs) is produced, by
applying a simple linear regression on the results of running the SUMO simulation from section
4.2 twice, once with and without light-rail constraints. The trip duration difference (∆t = tLRC −
tNonLRC) between the LRC and Non-LRC trip duration for each given trip is plotted against
distance. This trip duration delta represents the delay incurred by using light-rail constraints.
This time delta plot is used to develop a linear function through the use of linear regression with
some manual adjustment. Separately, a logarithmic equation is found that fits the data better,
but is not usable within MATSim.

Within this function the independent variable chosen is the length or distance of the trip, with the
resulting coefficient on duration being the dependant variable. The rationale for making distance
the independent variable rather than time, is that LRC delays are hypothesised to scale more with
distance than with time. This is because the effect is likely to be more pronounced within start
and stop traffic that occurs within short congested inner city trips, as opposed to long suburban or
rural trips that require very little starting and stopping. While distances vary between these trip
types, durations may be comparable, giving duration less explainability than distance with regard
to trip type. This unreliability of trip durations makes trip distance a more suitable independent
variable. Furthermore, as described in [59], part of the delay can be attributed to control delays,
which are the delays caused by traffic control devices. Control delay “represents the time spent in
queue plus the delay due to acceleration and deceleration”[59], and occurs at each traffic control.
Since the probability of encountering a traffic control increases with distance travelled, distance
can be treated as a rough proxy for the number of traffic controls encountered. It is true that traffic
controls are more prevalent in inner cities, potentially causing an under-representation of the effect
in cities and an over-representation in rural areas. Solving for this is beyond the scope of the study,
however instructions on how to account for this are provided. A brief analysis is also performed
on Inner City trips as compared to Suburban and Overall trips, to determine the significance of
this effect. Acceleration and deceleration appear to be consistent independent of traffic conditions.
This can be seen in acceleration and deceleration shockwaves, where wave speeds are independent
of traffic conditions such as density and flow [60]. Therefore we have opted for applying a universal
delay coefficient on metres travelled, rather than time travelled or other variables.

If a more accurate representation of the delay caused by light-rail constraints were required, it
is possible to produce multiple of the aforementioned linear functions. This could be achieved
by splitting the travelling population in both SUMO and MATSim by the characteristics of their
journey, to create sets of travellers that each adopt their own linear function. Meaningful categories
may include: number of traffic controls, number of intersections, number of turns, and average
density of roads travelled, with categories defined as −1, 0, and 1 standard deviation away from
the mean values. By creating additional modes in MATSim to represent each distinct category
(e.g. car1, car2, ...), it would be possible to apply a different linear function to each mode. This
approach has not been taken, but is documented here as a potential avenue for further research
that was considered.

The goal of the delay function is to increase the perceived travel time among travellers, to account
for the delay incurred by imposing light-rail constraints. To achieve this, the delay function must
be inputted into the MATSim scoring function described in 4.4. This is done via the marginal
disutility of distance term, dtrav,q. Since all inputs to the scoring function must be represented in
terms of utility (or disutility), the travel time delay function is first converted into disutility using
MATSim’s default disutility per hour of travelling by car, by multiplying the delay by this disutility.
Following this, the function is solved for one metre to get the disutility per metre travelled, which
is required by MATSim. The resulting coefficient is then able to be placed within the configuration
file.
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4.6 Adding Utility For Performing Other Activities While Travelling

A further adjustment to the scoring function (4.4) is needed in order to account for the second
property being studied, the ability to perform other activities while travelling. This takes the
form of a reduction to the marginal disutility of travel time βtrav,car(q), which is equivalent to
a reduction in VTT (Value of Travel Time), as both definitions represent reductions in utility.
Because existing research on the reduced Value of Travel Time (VTT) of travel modes that enable
performing other activities (3.4.2) has found a usable coefficient, it was not necessary to discover
this. Instead the existing research performed by Gucwa [40] was used to find the coefficient for
the amount of reduction needed, in this case using the High Quality rail figures identified, due to
the close match between the comfort and ability to perform other activities in High quality rail
services, and those expected in autonomous vehicles. Unfortunately there were limitations in the
precise values provided by Gucwa, and as a result several derivation and assumptions were needed
to convert from miles travelled to VTT values, including converting half a car’s VTT to a full
car’s VTT, since the full car VTT was not provided. The precise steps followed to find the VTT
reduction amount and their values are outlined in the latter part of the Results section 5.3.

To convert the VTT of existing marginal disutility of travel time values by car, the MATSim
marginal disutility of travel time term βtrav,car(q) is solved for for one hour using the VTT reduction
coefficient derived earlier, to obtain the new disutility per hour travelled. This parameter is then
placed within the configuration file.

4.7 Execution

The final configuration for MATSim contains the new marginal disutility of distance travelled as
a result of imposing light-rail constraints, and the new marginal disutility of time travelled after
adding the VTT reduction of performing other activities while travelling. The simulation is run
once with and once without these changes. The default proportion of travellers that have an
opportunity to change their travel mode in MATSim is 10% per iteration; this is maintained and
called replanning within MATSim. The term iteration here is defined as discrete simulation runs
where some proportion of agents use information from a prior run to replan their trip, in this case
10%. This is documented within MATSim [52]. The default number of iterations is 10, however
different amounts of iterations are experimented with as part of the analysis, until a convergence
is identified. The resulting change in travel mode from first to last iteration is recorded, both in
the original and adjusted model. This represents the net attractiveness of autonomous vehicles
relative to ordinary vehicles, and subsequently the uplift or decrease one would see in overall car
usage as a result.

The diagram below (3) outlines the process that has been followed.
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Convert Vista MAT-
SIM Melbourne Model

- (using SUMO’s net-
convert command)

Convert MATSim Trips
to SUMO format - using
a custom Python script

Duplicate SUMO Trips -
using a custom Python script

Discover light-rail constraints
through existing research

Make a copy of SUMO
trips file and add light-rail

constraints to one file

Run both SUMO trip
files with and without

light-rail constraints using
the MATSim converted
network, repeat for each
set of duplicate trips

Use linear regression and
resulting travel times to
find linear function that
explains delay difference

between LRC and Non-LRC
trips from the trip’s length

Update KPMG MATSim
Config - Convert LRC linear
function to utility per hour,
and apply to MATSim’s
’delay per km’ variable.

Apply VTT of performing
non-driving activities
to ’marginal utility of

travelling per hour’ variable

Discover relative Value-Of-
Travel-Time (VTT) differ-

ence to car VTT for perform-
ing non-driving activities
through existing research

Run KPMG MAT-
Sim with and without
revised config file -

using the MATSim Model

Compare travel mode us-
age proportions with and
without revised config file

Figure 3: End to end process followed
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5 Results

5.1 Vista MATSim Model

The Vista MATSim Model of the city of Melbourne was successfully converted to the SUMO
format. Due to issues in converting traffic lights, these had to be generated using SUMO’s traffic
light guessing option. A custom python script was used to convert the MATSim format population
trips to SUMO format trips. A second script was used to limit the trips counted to those within
the Inner East and CBD of Melbourne. This removes all trips that don’t originate or finish within
the bounding box shown below. Note that persons and activities were not replicated, only the
trips themselves and when they occurred.

Figure 4: Maximum bounds for trip origin and destination

The original population of this scenario has 14,530 persons making 51,460 trips. Within these
51,460 trips there are 14,484 trips located within the Inner East Suburbs, as defined by the below
map (4). These 14,484 are the trips used and duplicated within the study.

*NOTE: actual runs use 14,258 trips (98.4%) and 85,539 trips (98.4%) respectively due to 1.6%
of trips having an error in conversion between MATSim and SUMO formats.

Using the set car trips within Inner East and Melbourne CBD, the SUMO configuration file is
duplicated, with one copy being adjusted to include the Light-rail acceleration and deceleration
constraints (LRCs) of 1.34m2 and 2.01m2 respectively. These are found via the publicly available
track design handbook [15] which is used within Washington D.C. This is higher than the typical
passenger car’s average acceleration of 1.34m2, but lower than a typical maximum acceleration of
3m2 and jerk acceleration of 2.13m2 as described in [59].

The trip population is run in SUMO for n = 5, 10, 15, 20, 30, 40 to determine the number of trips
needed to mimic real-world average travelling speed of 42.73 km/h, which is obtained through the
MATSim simulation. The average speed, road occupancy and density are noted. To understand
the appropriate number of trips, the average trip speed in each simulation run is compared to the
MATSim average speed of 42.73 km/h, and the ideal number of duplicates is chosen.
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duplicates no. of car trips occupancy (%) density (v/km) speed (km/h)
1 14257 0.002 0.079 47.23
5 71283 0.019 0.459 45.44

10 142459 0.061 1.506 44.13
15 212679 0.153 4.235 39.15
20 278590 0.301 6.52 41.11
30 394937 0.813 14.13 37.74
40 486147 0.829 25.14 35.99

Figure 5: SUMO road occupancy, density, and speed by number of car trips

As can be seen in Figure 5, duplicating the trip population 10 times results in an average speed
of 44.13 km/h, which closely matches the MATSim average speed of 42.73 km/h. Therefore the
SUMO simulation is run with 10 duplicates, as this produces congestion levels in line with the
existing MATSim network.

5.2 Light-Rail Constraints

5.2.1 Generating the Delay Function

The SUMO model is run with 10 duplicates, once with LRC applied in the configuration to all cars,
and once without. The travel times of both LRC (tLRC)and Non-LRC (tNonLRC) simulation runs
are recorded, and the difference between the two trip durations for each trip (∆t = tLRC−tNonLRC)
is analysed, in order to find a relationship with trip length. This relationship will be used to define
the delay function that will be inputted into MATSim, using trip length as the independent variable.

It is of note that while analysis is performed on individual trips, ultimately it is the aggregate
duration for groups of trips that is used for deriving the delay function, rather than the duration
of individual trips. This is because individual trips have a much higher volatility, due to the effect
of applying LRCs being rather small, and subsequently not always occuring on any given trip.
However while the LRC effect does not always occur on any given trip, it does always occur when
at least a certain number of trips are made. The precise number of trips that need to occur to
produce a reliable relationship can be identified using a moving average and pearson’s correlation
coefficient.

First the difference is taken for each trip duration between its LRC and Non-LRC run, to produce
a time duration delta ∆t = tLRC − tNonLRC . This delta ∆t is plotted against trip length to test
two hypothesise. One is to determine whether there is a relationship between the length of the
trip and the amount of delay. The second is whether this relationship is linear and increasing with
time as one would expect (the longer the trip, the more delay minutes are incurred), or not.

Secondly, trips are sorted by trip length, and a moving-average is used to group trips together.
Moving averages of 1 (individual trips), 50, 500, and 5000 points are used. In Figure 6, graphs are
generated showing the trip duration delta (∆t = tLRC − tNonLRC) against trip length, using 1, 50,
500, and 5000 point moving averages on the trip duration delta respectively (total population is
141,459 trips).

Finally, the delay function is defined using a linear regression with some manual adjustment of
values to bring the trend closer to the data it represents. A logarthmic function is found that
appears to correlate well with the grouped data. While the logarithmic function more closely
follows the delay incurred, a linear function is necessary due to limitations in MATSim’s utility
function. While it may be possible to use logarithmic functions within MATSim, this requires
development work that is beyond the scope of this study.
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5.2.2 Analysing Findings

(a) no moving average (b) 50-trip moving average

(c) 500-trip moving average (d) 5000-trip moving average

Figure 6: Change in trip duration caused by Light-rail constraints (∆t = tLRC − tNonLRC) as a
function of trip length

∆ttrav,car(q)(dtrav,car(q)) = 5.4 ∗ 10(−2) · dtrav,car(q) − 5.46 · 103 (2)

Figure 7: Linear Delay function for the change in travel time when using LRC constraints
(∆ttrav,car(q)) that can be explained by trip length (dtrav,car(q))

∆ttrav,car(q)(dtrav,car(q)) = − log3(8.0 · 105 · dtrav,car(q)) + 1.9 · 103 (3)

Figure 8: Logarithmic Delay function for the change in travel time when using LRC constraints
(∆ttrav,car(q)) that can be explained by trip length (dtrav,car(q))

Note: For the above equations, the t terms’ definitions reflect those described in the methodology
section 4.4 and used in the MATSim manual [52].
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It was originally hypothesised that imposing light-rail constraints would cause delays in trips,
based on the understanding that less acceleration and deceleration would reduce a car’s ability to
react, due to phenomena such as control delay being exacerbated by delays in acceleration and
deceleration [61]. While this is true for the 75% of trips that are under 10 km (9) that average
215 seconds (3.6 minutes), it is not for trips greater than 10 km, as can be seen in 6, that average
434 seconds (7.2 minutes) shorter trip times. This means light-rail constraints are likely to be a
benefit rather than a hindrance for long distance commuters. It can be reasoned that the cause of
the benefit is the reduction in traffic slowing phenomena such as phantom jams, that aretypically
caused by over-acceleration or over-deceleration [62]. By reducing driver’s ability to accelerate and
decelerate, so too is their ability to over-accelerate and over-decelerate to cause such phenomena.
This would not occur as often with shorter trips, as they typically involve lower average speeds,
making them less likely to reach the acceleration and deceleration limits that were imposed.
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Figure 9: Trip Counts and Cumulative Distributive Function of Trip length

From the graphs in Figure 6, it can be seen that a 5000 point moving average produces the most
reliable relationship between the trip duration delta ∆t and trip length. This can be shown using
the Pearson’s Correlation coefficient, where a 500-point moving average results in a correlation of
r = −0.77, while a 5000-point moving average results in a correlation of r = −0.92. Therefore the
delay function being defined has been based on this finding.

The derived function suggests short trips initially incur on average a 546s penalty, but this reduces
by 54 seconds per kilometre travelled. This means the delay is fully negated at 10km and a reduction
of 54 seconds in travel time is achieved for every further kilometre travelled. This means a 20 km
trip with LRCs imposed would result in a travel time saving of 600 seconds or 10 minutes. While it
has been shown that the effect is most reliable for 5000 trips (r = −0.92), it is still strongly reliable
for 500 trips (r = −0.74), which can be achieved in 1 year and 3 months of daily driving, assuming
200 workdays per year of driving to and from work (200workdays×1.25years×2trips = 500trips).

A summary of the correlation findings is shown below in Figure 10. Additional figures were
produced for trips exclusively within the Monash University Clayton area, and trips exclusively
within the Melbourne CBD area. The location of these areas is shown in Figure 11, and will be
analysed separately.
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N-point
Moving Avg.

Bounded
Area

Monash
Clayton CBD

1 -0.14 -0.08 -0.08
50 -0.40 -0.23 -0.28
500 -0.77 -0.54 -0.75
5000 -0.92 -0.91 -0.98

Figure 10: Pearson’s Correlation Co-efficient between Trip Length and Change in trip duration
caused by LRCs

Figure 11: Monash Clayton (red), CBD (green), and Bounded Area (blue) bounds

5.2.3 Testing Universality of Delay Function

A further analysis is made on the CBD and Monash Clayton areas, to determine why the correlation
coefficients may differ. The graphs in Figure 12 were produced in the same way as those in Figure
6, only in this case limited to a 5000-point moving average, as this grouping was found to have
the highest correlation. The function derived from the overall data in 6 is carried over to test
its universality. It can be seen that the Monash area’s delay is over-represented by 200 seconds
compared to the function overall, while the CBD area’s delay is over-represented by 300 second
variance. The delay data suggests that shorter, inner city trips are less likely to incur delays
than suburban trips. However due to their short distance, CBD trips are also less likely to take
advantage of the travel time savings caused by light-rail constraints in longer journeys that was
identified earlier.
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(a) Overall 5000-trip moving average (b) CBD Area 5000-trip moving average

(c) Monash Area 5000-trip moving average

Figure 12: Change in trip duration caused by Light-rail constraints (∆t = tLRC − tNonLRC) as a
function of trip length - Monash & CBD Areas. Truncation in the above graphs is due to maximum
trip lengths being shorter within each area, as compared to the complete data set.

5.2.4 Converting Delay Function to a Utility Function

While the aforementioned function is useful for understanding travel delay in terms of travel time,
in order for MATSim to make use of the function it must be converted to utility. This is because
utility is the measure used within Value-of-Travel-Time (VTT) metrics, and is howMATSim derives
its trip scores. MATSim by default uses a utility of -6 per hour for the car mode. As our delay
is in seconds rather than hours, the travel time is divided twice by 60, then multipled by the -6
utility per hour currently used in MATSim for car travel (6). This provides us a marginal utility
that can be used in turn to adjust the marginal utility of distance travelled by car in MATSim.
which is desired since our delay function uses distance as its independent variable. The equation
in (3) is repeated using the marginal utility term βtrav,car(q) instead of the time term ttrav,car(q).

βtrav,car(q) = ttrav,car(q)/60/60 ∗ (−6) (4)

Figure 13: Converting travel time by car (ttrav,car(q)) into MATSim marginal utility of travelling
by car (βtrav,car(q))
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Now repeating the equation in (5), we arrive at the below equation, which has the following graph.

Figure 14: Change in marginal utility of travelling when using Light-rail constraints (∆βtrav,car(q))

∆βtrav,car(q)(dtrav,car(q)) = 1.0 · 10(−4) ∗ dtrav,car(q) − 9.077 · 10(−1) (5)

Figure 15: Change in marginal utility of travelling when using Light-rail constraints (∆βtrav,car(q))
that can be explained by trip length (dtrav,car(q))

This is then used to adjust the marginal utility of distance in MATSim. Since MATSim uses
marginal utility per metre, we solve for 1 metre by inputting d = 1. Note that the constant
−9.077 · 10(−1) is not included here, as this is entered separately into the constant variable within
MATSim.

βd,car(q) = ∆βtrav,car(q)(dtrav,car(q))

β1,car(q) = ∆βtrav,car(q)(1)

β1,car(q) = 1.0 · 10(−4) · 1

(6)

Figure 16: Adjusting marginal utility of distance (βd,car(q)) using marginal utility of travelling
(βtrav,car(q)), then finding the marginal utility for 1 metre (d = 1)
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5.3 Value-Of-Travel-Time (VTT) Reduction from Performing Other Ac-
tivities

To implement the second component of our passenger comfort model, the Value-Of-Travel-Time
(VTT) of performing other activities while travelling is used. As performing other activities is
while driving will be a function unique to autonomous vehicles, this feature has been referred to
as the ’AV component’ or ’AV VTT reduction’ component from here on out.

5.3.1 Discovering the AV VTT Reduction Value

The precise reduction of Value-Of-Travel-Time will not be known until autonomous vehicles are
a reality. However it has been hypothesised to be similar to existing high-speed rail services, at
79% of an existing car’[40]. The rationale and calculation behind this is described in 3.4.2. High
quality rail has a VTT 1.587× higher than a ’half-car’, which Gucwa uses as another possible VTT
calculation, where the car’s VTT is simply halved. As Gucwa does not provide the High quality
rail VTT as a proportion of a full car’s VTT, only a half car’s VTT, we must calculate it based
on the half-car’s VTT. Also this VTT value itself must be derived from the increased proportion
of miles travelled, since the value itself is not given. Here it is assumed that miles travelled is an
inverse of VTT, since a decrease in VTT corresponds to an increase in miles travelled, as shown
by Gucwa.

vhqr = VTT of High Quality Rail

vhc = Half the VTT of a Car

vc = Full VTT of a Car

mhqr = Uplift in Vehicle Miles Travelled in High Quality Rail

mhc = Uplift in Vehicle Miles Travelled within a Half-Car VTT

mr =
mhqr

mhc/2
= High Quality Rail Miles Travelled uplift as proportion of Half car uplift halved

Because VTT is inversely correlated with increase in miles travelled..
we take the inverse of the ratio and multiply by half car VTT

vhqr = vhc ∗ 1
mr

Which is the same as multiplying the full car VTT by half the uplift in miles travelled

vhqr = (vhc · 2) · ( 1
mr
/2)

vhqr = vc · ( 1
mr
/2)

vhqr = vc · ( 1
0.6301/2)

vhqr = vc · 0.7935

= 20.65% reduction
(7)

Figure 17: The Autonomous Vehicle VTT Reduction from performing other activities while trav-
elling. Note that we multiply Half-Car VTT vhc by two to get a Full Car VTT.

To incorporate the aforementioned VTT reduction of performing other activities while travelling,
the existing marginal utility of time spent travelling by car is multipled by this VTT reduction, as
shown in (18). Since MATSim uses marginality utility per hour, we solve for 1 hour by inputting
trav = 1 in the below equation. MATSim sets a default marginal utility of -6 per hour for car
travel, making this equation ultimately equal to -6 multiplied by our VTT reduction of 0.79.
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βtrav,car(q) = βtrav,car(q) ∗ ∆βtrav,car(q)
β1,car(q) = β1,car(q) ∗ 0.79
β1,car(q) = (−6) ∗ 0.79
βtrav,car(q) = −4.74

(8)

Figure 18: Adjusting marginal utility of time spent travelling by car (βtrav,car(q)) using the VTT
reduction (∆βtrav,car(q)), then solving for 1 hour (trav = 1)

5.4 Running the KPMG MATSim Model

5.4.1 Adjusting Initial Utility Values and Number of Iterations

For the execution of the simulation, the KPMG MATSim Model is used rather than the Vista
MATSim Model. This is due to its improved travel mode utility functions discussed in 4.3. This
model uses a default car utility of 0 per hour, which prevents the 21% VTT Reduction from being
applied. To counteract this, all disutility per hour metrics have had 6 subtracted from them,
making the initial car disutility per hour -6, the same as the default MATSim values, instead of
0. This changes travel mode usage as shown in the appendix Figure 27. However the validity of
the conclusions remain if the new values are treated as baseline, and only the change that occurs
when adding the LRC and AV VTT Reduction utility components is analysed. This is because
the change is constant regardless of baseline.

The number of iterations needed for convergence is also analysed in the appendix Figure 27.
Travel mode changes appear to stagnate after 25 iterations, converging to values that remain
almost unchanged for a further 5 iterations. Because of this convergence, 30 iterations was deemed
sufficient for this analysis.

5.4.2 Execution

The final LRC equation from Figure 6 is entered into the MATSim config variable
marginalUtilityOfDistance_util_m. The final VTT reduction equation from Figure (18) is
entered in the MATSim config variable marginalUtilityofTraveling_util_hr.

With the final MATSim config file including both the delay function from section 5.2.4, and the
value-of-travel-time reduction from performing other activities in section 5.3, the simulation is run
four times, once with these changes, once without as a control for comparison, and once with each
change individually to assess its effect in isolation. The table in Figure 20 shows the average score
of each of these runs.

Technical issues prevented the analysis of these effects together, where the simulation software was
not able to complete the simulation run. However, hypothetical maximums and minimums were
defined, depending on how mutually exclusive the effects are. The higher value would represent the
effects being entirely independent, while the lower values assumes a dependency through increased
congestion, which would limit car use to the highest value seen thus far. The equations in figure
19 describe these two hypotheticals.

maxLRC+AV = LRC +AV
minLRC+AV = max(LRC,AV )

(9)

Figure 19: Hypothetical minimum and maximum effect of applying LRC and AV components
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5.4.3 Analysis of adding LRC and AV components

Travel Mode Attractiveness and Usage Changes

Travel Mode Control LRC LRC Chg. AV AV Chg. LRC AV Hmax LRC AV Hmin
Car 25.67 26.08 0.41 26.56 0.89 26.97 26.56
PT 18.51 19.22 0.71 18.17 −0.34 18.88 19.22

School Bus 23.62 23.85 0.23 23.7 0.08 23.94 23.85
Transit Walk 27.04 30.95 3.91 28.55 1.52 32.46 30.95

Bike 10.86 11.56 0.69 11.61 0.75 12.31 11.61
Taxi 27.01 27.03 0.02 27.05 0.03 27.06 27.05
Walk 13.81 13.33 −0.48 13.91 0.1 13.43 13.91
Ride 34.35 34.34 −0.01 34.4 0.05 34.38 34.4

Other 34.67 34.68 0.01 34.71 0.04 34.72 34.71

Figure 20: Travel mode utility scores (attractiveness) after adding LRC and AV VTT reduction
components. Note that Train, Tram and Bus are combined within the KPMG model to the single
mode ’PT’

• Control: The model before adjusting for the two components being analysed.
• LRC: The model after it has been adjusted with the LRC component only
• AV: The model after it has been adjusted withthe AV component only (the reduction in
VTT as a result of performing other activities while travelling)

• LRC AV: The model after it has been adjusted with both LRC and AV components
– LRC AV Hmax: The hypothetical maximum of the LRC AV component,maxLRC+AV =
LRC +AV .

– LRC AV Hmin: The hypothetical minimum of the LRC AV component, minLRC+AV =
max(LRC,AV ).

Figure 21: Simulation run definitions

The average score for each travel mode describes its net attractiveness to travellers. On initial
inspection it is evident that car attractiveness increases by 0.29 when LRCs are applied, rather
than decreasing. This is surprising given that only 25% of trips were identified to have a saving
in travel time in section 5.2.2 after LRCs were applied. However, the 25% of trips that had a
travel time saving were all more than 10 km in length on average. By looking at the average car
trip distances in Figure 22, it can be seen that while car trips were shown to be more attractive
(have a higher score) in 20, total car trip distances also increase by 19% when LRCs are applied,
compared to both AV and LRC components individually. Knowing that it is only trips greater
than 10km that see a benefit from LRCs, it follows that the only way the average score for car users
can increase, is if the proportion of long-distance (>10 km) travellers using cars increase, since
an increase in short-distance (<10 km) travellers would reduce the average score. Therefore, the
increase in average car score can be explained by more long-distance travellers (>10 km) opting for
car travel over public transport. The reason for this is the decreased travel time (lowered disutility)
that LRCs provide specifically to long-distance travellers. This means we are likely to see more
car use from long-distance travellers as a result of imposing LRCs.

Travel Mode Control LRC LRC Chg. AV AV Chg. LRC AV Hmax LRC AV Hmin
Car 41, 996 49, 062 7, 067 41, 791 −205 48, 858 49, 062
PT 24, 878 23, 592 −1, 286 25, 190 313 23, 905 25, 190

Figure 22: Average trip distance changes after adding LRC and AV VTT reduction components.
Note that Train, Tram and Bus are combined within the KPMG model to the single mode ’PT’
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Travel Mode Control LRC LRC Chg. AV AV Chg. LRC AV Hmax LRC AV Hmin
Car 2, 579 2, 737 158 2, 573 −6 2, 731 2, 737
PT 5, 046 4, 943 −103 5, 121 75 5, 018 5, 121

Figure 23: Average trip time changes in seconds after adding LRC and AV VTT reduction compo-
nents. Note that Train, Tram and Bus are combined within the KPMG model to the single mode
’PT’

Furthermore, after applying LRCs the average trip distance of public transport (PT) trips has
decreased by 6%, which can be explained by the disutility of adding LRCs specifically for car trips
less than 10 km. Because of this, short car trips are more likely to replaced by public transport
trips after LRCs are applied. Interestingly, PT scores also improve by 0.71 as a result of LRCs,
and Transit Walk scores improve by 3.91 or 14%. It is unclear why this behaviour occurs.

Applying the AV VTT reduction component also shows an increase in car attractiveness, by a
greater 0.89. But unlike applying LRCs, the average trip distance does not change (22). This can
be explained by the fact that the AV VTT reduction does not scale with distance, only with time.
As has been discussed in section 4.5, short distance trips can take just as much time to complete as
long distance trips due to congestion, particularly in heavily congested urban areas where average
speeds are many times slower. Therefore, the 0.89 increase in average score is consistent across all
trips, at least with regard to distance.

Travel Mode Split Changes

The change in average travel modes scores (and therefore greater utility) as a result of introducing
the two components (LRC and AV) should in theory be reflected in a change in travel mode use,
where more attractive travel modes are used more frequently, and less attractive travel modes less
so. This is analysed in the table below 24.

Mode Before Replanning Control LRC LRC Chg. AV AV Chg. LRC AV Hmax LRC AV Hmin
Car 50.59% 58.19% 58.3% 0.11% 58.56% 0.37% 58.68% 58.56%
PT 14.49% 7.65% 7.53% -0.12% 7.31% -0.34% 7.19% 7.53%

Bike 1.38% 1.29% 1.28% -0.01% 1.28% -0.01% 1.27% 1.28%
Ride 18.96% 18.79% 18.79% 0.01% 18.77% -0.02% 18.78% 18.79%
Walk 13.48% 12.99% 13.00% 0.01% 12.99% -0.01% 12.99% 13.00%
Other 0.28% 0.28% 0.28% 0% 0.28% 0% 0.28% 0.28%

Figure 24: Travel mode usage changes after adding LRC and AV VTT reduction components -
KPMG scenario. Note that Train, Tram and Bus are combined within the KPMG model to the
single mode ’PT’
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Figure 25: Travel mode split after adding LRC and AV VTT reduction components - KPMG
scenario. Note that Train, Tram and Bus are combined within the KPMG model to the single
mode ’PT’

• Before Replanning: The travel mode use before any traveller replanning occurs, and before
adjusting for the two components being analysed.

• Control: The travel mode use after replanning, but before adjusting for the two components
being analysed.

• LRC: The travel mode use after replanning, with the addition of the LRC component only.
• AV: The travel mode use after replanning, with the addition of the AV component only (the
reduction in VTT as a result of performing other activities while travelling)

• LRC AV: The travel mode use after replanning, with the addition of both LRC and AV
components.

• LRC AV: The travel mode use after replanning, with the addition of both LRC and AV
components.
– LRC AV Hmax: The hypothetical maximum of the LRC AV component,maxLRC+AV =
LRC +AV .

– LRC AV Hmin: The hypothetical minimum of the LRC AV component, minLRC+AV =
max(LRC,AV ).

Figure 26: Definitions used within the travel mode split

As expected from the improved average score of the car travel mode, car trips represent 0.11%
more trips after the LRC component is applied, while public transport (PT) sees a 0.12% decrease.
However, since it was identified in the beginning of 5.4.3 that car trips became 19% longer while
PT trips became 6% shorter, this cannot be the same set of trips, and therefore is only explained
by the fact that the shorter car trips that became PT trips were completely offset by the longer PT
trips that became car trips. That is to say the negative attractiveness (disutility) seen by adding
LRCs to trips less than 10 km, is completely offset by the positive attractiveness (utility) of adding
LRCs to trips greater than 10 km. However, this effect can be identified as small, by comparing
the LRC component’s effect to the AV VTT reduction component’s effect, which did not affect trip
distances. The AV component led to an increase of 0.37% in car users, with a comparative 0.34%
decrease in PT users. Since it is known that the AV component provides a constant utility increase
across all trips, we can conclude that improving the average car attractiveness score by 0.89 leads
to at most 0.37% increase in car use, all things being equal. This is further evidenced by looking
at the consistency of average trip times in Figure 23, where there is a change of only 6 seconds
between the Control and the AV applied run, as compared to a change of 158 seconds for when
the LRC component is applied. This means the LRC component should have increased car use by
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0.18% (half of the AV component) rather than 0.11%, yet didn’t because of the aforementioned
LRC’s negative effect on short trips.

In spite of the change in trip distributions from the LRC component, and larger impact of the AV
component, the overall effect on travel mode split can be considered negligible, as it is less than
half of one percent. This includes the hypothetical maximum and minimum described in section
5.4.2. The reason for this is likely to be a combination of the smallness of the component’s effects
on average trip scores (2-4%), along with trip changes requiring a certain threshold to be reached
before a change in travel mode occurs. The latter can be shown by the 7 point difference between
the average score of Car and PT travel modes. In the vast majority of cases, a 2-4% increase in
trip score would not be sufficient to broach this threshold.

31



6 Conclusions

The original hypothesis was that the introduction of light-rail constraints (LRCs) would add a net
delay to all trips. While trips less than 10 km in distance saw an increase delay of 215 seconds on
average, trips greater than 10 km in distance had reduced their trip time by 434 seconds through
the introduction of LRCs. It was speculated that this may be due to the reduced ability for over-
accelerating and over-decelerating in such scenarios, which has been known to cause traffic slowing
phenomena such as phantom jams. Such over-acceleration and over-deceleration was believed to be
less likely in shorter trips due to a lower average speed reducing the capability for high acceleration
or deceleration. This suggests restrictions on acceleration and deceleration may be sought after in
their own right for long journeys to improve traffic flow, and not simply for improving passenger
comfort in autonomous vehicles as originally intended.

A further finding on the use of light-rail constraints was a dramatic change in car trip distance
distributions, where car trips were on average 19% longer in distance after imposing light-rail
constraints, while public transport trips were 6% shorter in distance. This was determined to
be caused by the reduced travel time of longer trips as a result of imposing LRCs making car
travel more appealing for long distances. Similarly, the delay in short-distance car trips caused by
imposing LRCs was found to be responsible for reducing the average distance of public transport
trips, as more short trip car travellers opted for public transport. The consequence of this are
a potential greater emphasis on public transport use for short-distance urban travellers, along
with a marginally reduced focus on long distance public transport. Though this would need to
be considered against other factors such as parking, that may still prohibit some long distance
travellers from driving in spite of reduced travel times.

The AV VTT reduction born by the ability for travellers to perform other activities while travelling
was shown to have a more significant effect than light-rail constraints on the appeal of cars.
However, it did not change the trip distribution across travel modes with regard to distance or
time, as unlike the light-rail constraints component, average distances for travel modes did not
change, nor did average travel times.

The intention of this analysis was to understand the effect of the LRC and AV (VTT Reduction)
components on the appeal of car travel, and subsequently the number of car users on the road.
While the LRC component added a delay for trips less than 10 km in distance, which comprised the
majority of trips, both LRC and AV showed a net positive effect on the attractiveness of car use.
Despite this, there appeared to be minimal to no change in travel mode as a result of implementing
the LRC or AV components.

While technical issues prevented the successful simulation of the LRC and AV effects together, the
use of rationalised hypothetical maximums and minimums showed this extra simulation run would
not change the conclusion of the analysis.
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7 Appendix
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Figure 27: Old and New Utility values for travel modes within the KPMG MATSim model. Travel
modes suffixed with ’2’ contain the new utility figures that subtract 6 utility (-6) per hour from all
modes.
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